How We Can Use Less Water to Grow More Crops | Civil Eats

How We Can Use Less Water to Grow More Crops

As drought rages on in the West, scientists search for improvements to wasteful irrigation technologies.

This story was adapted from a longer version at Ensia.

When a farmer wonders how much water a crop needs, a simple hands-on test has always sufficed: Grab a handful of soil and feel how it clumps together.

Now something else is helping inform the farmer’s touch: Data. Sensors, satellites, and software are adding piles of new data to help manage water on the farm. From soil moisture to leaf transpiration, pump speed to valve status, today’s farm fields can seem as wired as airports.

Water scarcity is adding urgency to the quest for this kind of information. Droughts have seemingly become more common and persistent across the globe, presenting farmers with tough choices and slimmer economic margins. In the face of uncertainty, technology offers one way to exert more control over basic inputs like water.

In the Texas panhandle, the recent prolonged drought forced many farmers to realize they can no longer depend on rain alone to irrigate crops. Many are drilling deep wells to tap into the Ogallala Aquifer, the largest in North America, for supplementary irrigation water.

Susan O’Shaughnessy, a research agricultural engineer at the U.S. Department of Agriculture (USDA) in Bushland, Texas, is developing new sensors for irrigation devices to help farmers use less precious groundwater.

“We know it’ll run out someday. We can’t stop that,” she says of the aquifer. “Irrigation is important to people here — not only farmers, but the whole economy. We’re looking to sustain farmers for a few years to come.”

Improved irrigation efficiency can also reduce diversions from creeks and rivers, leaving more water for aquatic habitat and other human uses. And it may prevent herbicides and fertilizers from being carried back into those rivers when water runs off farm fields.

Sensitive Center-Pivots

Agriculture accounts for 69 percent of global freshwater withdrawals, according to estimates by the United Nations Food and Agriculture Organization (FAO). The number is generally higher in developing countries and lower in industrialized nations, where a greater share goes to manufacturing. In the United States, agriculture uses close to 40 percent of freshwater withdrawals.

Only about 20 percent of global farmland is irrigated, but it accounts for 40 percent of food production. Flood irrigation is the most commonly used method, even though crops use only about half of the water applied by this method.

Many people recognize a center-pivot sprinkler because it creates those “crop circles” visible from aiplanes. A giant sprinkler on wheels rotates around a central water supply, watering a circular field. It is the most common irrigation technique in the Texas panhandle and many other parts of the United States. And it is becoming increasingly popular around the world because it is simpler and durable. It can also be efficient, with up to 90 percent of applied water being absorbed by the crop. The remaining 10 percent is either lost to the wind or runs off the field.

O’Shaughnessy is helping make center-pivot systems even more efficient by developing infrared sensors. These measure temperature in the leaf canopy of the crop below and provide data that helps farmers apply water only when and where it’s needed.

In O’Shaughnessy’s system, an onsite computer—the brains of the US$3,000 system—processes data from the infrared sensors along with weather information. The computer compares these data against stress thresholds for each crop, maps the area, and creates a precise watering schedule. Different zones within the circle may have unique thresholds based on soil type, drainage characteristics, and other factors, and will receive different amounts of water.

“At midnight, it takes this data … and spatially calculates the crop water stress for each management zone,” O’Shaughnessy says. “So if that is exceeded, it signals to the system that an irrigation is needed in that zone.”

Flood, Drip, Flood

We’ll bring the news to you.

Get the weekly Civil Eats newsletter, delivered to your inbox.

On most irrigated farms around the world, water arrives by some form of surface irrigation, usually by flooding water into open ditches fed by a river or pumped from the ground. It then gets to crops the way it has for millennia—via flooded furrows.

Now, drip irrigation is an increasingly popular approach. The technology disperses water in small, flexible water lines, either above or below ground. In most cases, an opening positioned at each plant, releases water at a measured rate. Many farms are converting to drip because it allows precise application of water, as well as application of fertilizers that are delivered with the water directly to the root zone. But to make it work, the water first must be pressurized in the field, and that requires ponds, pumps, filters and pressure regulators—which require a power source and regular maintenance.

An Australian company, Rubicon Water, is working with the University of Southern Queensland to make surface irrigation as efficient as drip using an approach it calls “high-performance surface irrigation.” The basic principle involves flooding fields at a faster rate and with more limited quantities of water than that used by traditional methods. It seems counterintuitive, but it works because the speed and precision provided by soil-moisture sensors and automated canal gates means the water doesn’t have an opportunity to run off the field or soak deep into the ground where the crops can’t use it.

When canal automation was used in Australia’s Murray River watershed, the approach saved 32,000 acre-feet of water per year from being diverted for crops, which was then used to improve the river’s habitat.

A study completed in March by Australia’s Grains Research and Development Corporation found such tight control of surface irrigation reduced water losses below the root zone by more than 50 percent. It also reduced nitrogen losses and helps plants take in nitrogen more efficiently. Farmers note that the technology saves time as well, because they no longer have to race through their fields to close and open canal gates by hand at just the right time.

Gauging Absorption

Another new technology being used in California, primarily with drip irrigation, measures actual evapotranspiration—the movement of water from soil through plants to the atmosphere—on an entire farm field. Sensors have long been available to measure evapotranspiration for a single plant or a single point in a field, providing data farmers can use to estimate water use on a whole field. But that approach is imprecise.

The new approach, called “surface renewal,” measures the energy of wind eddies that contact plants as a way of calculating the amount of water absorbed by the crop. It can be compared against a predetermined stress level in the plant to decide how much water to apply for the best yield—or, in the case of wine grapes, the best balance of acids in the grapes to get the desired flavor.

Developed by researchers at the University of California at Davis, the system is being deployed commercially by Tule Technologies, a company formed with university support. The company installs its sensors, which can cover as much as 10 acres for $1,500 each, and provides and helps farmers keep track of the data. In addition to grapes, the system is being used with almonds, walnuts, citrus, pistachio, melons, strawberries, tomatoes and other crops.

Tom Shapland, CEO of Tule Technologies, said the goal is to both improve crop yield and save water.

“If a grower happens to start applying too much water, we tell them the plants are not using all [of it],” says Shapland, who developed the system while a Ph.D. candidate. “In the same field and in the same season, we sometimes help with water savings, yield, and quality.”

Time and Money

Time is an important factor in any new irrigation technology, and one that’s not often taken into consideration, says Daniel Howes, a professor of engineering and irrigation technology at California Polytechnic State University in San Luis Obispo.

Thank you for being a loyal reader.

We rely on you. Become a member today to read unlimited stories.

Howes cites the example of data provided by soil moisture sensors buried 2 to 3 feet down at strategic intervals in a field. The sensors have become common across the U.S. for many types of crops, to help farmers decide how much water a field needs and when.

But the large volume of data they spit out can be overwhelming. Howes says that time management studies have shown farmers have as little as 5 percent of each day to make irrigation decisions. The rest of the day is packed with choices about labor management, tractor work, pest control, fertilizer application and purchasing raw materials—not to mention selling the crop.

“A lot of farmers have gotten bogged down and basically abandoned that [soil moisture] system, because … they just don’t have time to actually look at it every day and decipher the data,” Howes says.

In partnership with colleagues at NASA and the U.S. Geological Survey, Howes is working to measures of evapotranspiration on farms with remote-sensing data from satellite imagery. The team is producing photos with 30-meter resolution showing water use in varying color codes, allowing farmers to quickly see which parts of their fields needs more or less water.

Because of processing time, however, those images may be one or two weeks old once they reach the farmer. The next step, Howes says, is to gather similar images via drones that can produce the same kind of maps in finer detail and more rapidly. It remains to be seen if and when this scenario might play out.

Money matters, too.

“A big part of the business is to make sure you’re not overspending on technology,” said John Diener, a farmer in California’s San Joaquin Valley, who has helped Howes and colleagues with the satellite mapping. “We are conserving every drop of water that we can. It’s not in our financial interest to do anything but that.”

There have never been so many ways to help conserve water on farms. But will farmers embrace these high-tech solutions, given the trade-offs? Just like the future of the water supply, that remains to be seen.

Matt Weiser is a journalist based in Washington, D.C., who specializes in water and flood control issues. His work has appeared in Sierra,,,, and High Country News, among others. He is managing editor of, a new-media organization focused on covering the California drought and the state’s water issues. Read more >

Like the story?
Join the conversation.

  1. Smokey
    Now if only we could get urban and suburban home owners in gearing up with technology and wising up generally to stop wasting water we might get a grip on this drought thing. Some farmer somewhere squeezed out another 0.65% improvment in water use and the suburb next door washes a dozen cars and runs a week's worth of water down the drain brushing teeth, washing vegetables and rinsing out recyclables to undo the farmer's contribution. We need a holistic approach that takes in all users and abusers of water instead of just beating on farmers all the time.
  2. Erudite
    Fungi can play a huge role in retaining water in soil, perhaps there's a way to inoculate seed before planting to ensure that mycelium is present to improve absorption and retainment?
  3. Janet Day
    Instead of articles that tell us how to continue to grow the same crops -- ones that are supplemented by the US government, not used for human consumption, etc. -- why not teach us how we can use drier land to grow other crops like tepary beans and prickly pear, both of which are delicious foods for humans?
    • Krittalak
      Totally agree. We waste so much resources through livestock. It is time to shift away from the old way. We have to take the responsibility by at least shifting to mostly plant-based diet.

More from




Zero-Waste Grocery Stores in Growth Mode as Consumers Seek to Ditch Plastic

Inside a re_ grocery store in the Mar Vista neighborhood of Los Angeles. (Photo courtesy of re_grocery)

On Farms, ‘Plasticulture’ Persists

Rows of plastic-covered strawberry plants.

Oral History Project Preserves Black and Indigenous Food Traditions

Ira Wallace (left) and Sariyah Benoit sit together in Spelman College’s Victory Garden. (Photo credit: Heirloom Gardens Project)

Can AI Help Cut Plastic Waste From the Food System?